

网络思维-2 连通性,协议栈

zxu@ict.ac.cn

提纲

Acu-Exams-CP

- 网络思维概述
- 名词术语
- 网页编程
- 连通性
 - 名字空间
 - 网络拓扑
- 协议栈
 - 分组交换
 - Web over Internet
- 网络效应与职业素养

课件中包含教科书未包括的素材引用,特此致谢

什么是网络思维?

- 强调连通性与协议栈的思维方式称为网络思维
- 很多问题涉及用户/数据/算法/部件的连接体,而非单体
 - 连接体就是网络,即多个节点连接或通信的整体
 - 必有连接,可有通信
 - 网络是客体(object, 宾语): 文献网
 - 全球计算机科学文献网络,节点是文献,连接是引用
 - 有连接,无通信
 - 网络是主体(subject, 主语): 机群(cluster of computers)
 - 机群 算出 文献网; 机群的节点之间有通信
- 个人作品实验: 动态网页

网页编程

- HTML/CSS/JavaScript入门知识,提升学习能力
- 学习方法建议
 - 将已学到的Go编程知识拓展到Web编程
 - 注意语法不同点,例如每条语句后要加";"
 - 通过例子学习新知识;实验课有详解,与助教一起做一遍
 - 提升自己的学习能力与创造性表达
 - 可参考往届同学个人作品库 https://www.solid.things.ac.cn:7245/web_exp

Graphics credit:
Siyue Li
50%时间创造
50%时间开发

网络思维使人们发现了很多有趣现象

- E.g., what is your Erdös Number?
 - Measuring interdisciplinary nature of modern research
 - https://mathscinet.ams.org/mathscinet/freeTools.html?version=2
- Paul Erdös (爱尔迪西), 匈牙利数学家 (1913–1996)
- "Master of Collaboration", 1400篇论文, 500合著者
- Erdös Number = 0 → Erdös himself
- Erdös Number = 1 → Erdös' coauthor
- Erdös Number = 2 → Erdös' coauthor's coauthor
- Erdös Number = 3 → Erdös' coauthor's coauthor

金芳蓉教授网站

https://mathweb.ucsd.edu/~fan/photo/ep.html

逛博物馆的反思: 从学历史到pagerank

- 前几天去了Harrisburg,逛了两个博物馆...不由得想起中学时候我历史一直不好。出博物馆之后我就开始思考这个问题——我在初高中的一个误区就是,我忽略了事件之间的关系。
- 如果每件事都是一个点的话,那我的错误可能就在于,我过于注重每个点(vertex)内部的样子,却忽略了点与点之间的关系。
- 这似乎对应了网络思维中的连通性。
- 这里书中列出了两条,我觉得恰好能够对应学习历史的方法:

唐寅的博文 2022.05.08

国科大2017级

现在美读博士

网络思维催生新概念、新方法

- 第一代 vs. 第二代搜索引擎
- 1st generation search engines
 - Computed search results by matching the keywords in search queries to the contents of webpages (nodes)
 - Only utilized nodes of the network of webpages
- 2nd generation search engines
 - Around 1996, Jon Kleinberg, Robin Li (李彦宏), and Larry Page observed a phenomenon:
 - Web links also significantly influence the relevance of search results
 - Utilized both nodes and interconnections to develop the 2G search engines with better results
 - More fully utilizes network thinking and created Google and Baidu, serving billions of users and generating annual revenue over \$100 billion

1. Connectivity (连通性,互联互通)

- 连通性往往用一个图表示
 - Often expressed as a graph $G = \langle V, E \rangle$ of two sets
 - Set of nodes (vertices): $V = \{v_1, v_2, \dots, v_n\}$
 - Set of edges (links): $E = \{e_1, e_2, ..., e_m\}$
- Connectivity studies naming and topology problems
 - Naming: How to name the nodes of a network? How to find a specific node? How to refer to a specific node? 如何命名网络的节点、发现节点、指向节点?
 - How are the nodes interconnected? Does the network structure change over time?
 网络拓扑如何变化?
- Undirected
- $V = \{v_1, v_2, v_3, v_4\}$
- $E = \{e_1, e_2, e_3\}$
- Directed
- $V = \{v_1, v_2, v_3, v_4\}$
- $E = \{e_1, e_2, e_3, e_4\}$

directed graph

1.1 Naming 命名与名字空间

- Every network has one or more namespaces
 - Consisting of all names specified by a naming scheme
 - Naming scheme: a function mapping a legitimate string to a node or an edge
 - 一个名字是一个合法字符串

1.1 Naming 命名与名字空间

- Every network has one or more namespaces
 - Consisting of all names specified by a naming scheme
 - Naming scheme: a function mapping a legitimate string to a node or an edge
 - Specified by a standards body 命名方法往往由志愿者社区标准确定
 - Institute of Electrical and Electronics Engineers (IEEE)

国际电气与电子工程师协会

Internet Engineering Task Force (IETF)

国际互联网工程任务组

World Wide Web Consortium (W3C)

万维网联盟

Namespace	Instance	Remark on naming schemes	
Personal name	Joan Smith	Personal names in a country	
WeChat user	中关村民	Any legitimate string per WeChat standard	
URL	cs101.ucas.edu.cn/中文/	Universal Resource Locator of a webpage	
Internet site	www.ict.ac.cn	Any domain name by IETF standards	
Email address	zxu@ict.ac.cn	userName@domainName	
IP address	159.226.97.84	Internet Protocol address per IETF standards	
Phone number	189-6666-8888	11 decimal digits by Telcom provider standards	
MAC address	00-1E-C9-43-24-42	12 hexadecimal digits per IEEE standards	

命名涉及的三个概念

- **名字**(name)是最广的概念,指代某个实体(entity)
 - 实体往往是网络中的节点,也可以是边
 - 例如,同学们用Go语言编程时使用的变量名 studentGender := 0
- 地址 (address) 是可直接用于访问所指代实体的名字
 - 例如,采用地址运算符获得的地址 &studentRank
 - 例如,汇编语言程序看见的内存地址
 - 不是地址的名字需要转换出地址才能直接访问实体
- 标识符 (identifier, ID) 是可唯一标识所指代实体的名字
 - 在某个范围内唯一
 - 例如,一个自然人的身份证号
 - 例如,万维网网址 URL

- Uniqueness. Does a name map to a unique node? 唯一性
 - The email address namespace enjoys uniqueness, but the namespace of personal names of a country's population does not have uniqueness. There may be multiple persons named Joan Smith, causing *name conflicts*, which in turn may lead to wrong connections.
 - 可与身份证号比较(教科书121页)

Namespace	Name (a legitimate string)	Uniqueness
Personal name 自然人姓名	Joan Smith	?
WeChat user 微信用户名	中关村民	?
URL 万维网网址	cs101.ucas.edu.cn/中文/	?
Internet site 因特网域名	www.ict.ac.cn	?
Email address 电子邮件地址	zxu@ict.ac.cn	?
IP address IP地址	159.226.97.84	?
Phone number 手机号码	189-6666-8888	?
MAC address MAC地址	00-1E-C9-43-24-42	?

- Uniqueness. Does a name map to a unique node?
 - The email address namespace enjoys uniqueness, but the namespace of personal names of a country's population does not have uniqueness. There may be multiple persons named Joan Smith, causing *name conflicts*, which in turn may lead to wrong connections.

Namespace	Name (a legitimate string)	Uniqueness
Personal name	Joan Smith	No
WeChat user	中关村民	No
URL	cs101.ucas.edu.cn/中文/	Yes
Internet site	www.ict.ac.cn	Yes
Email address	zxu@ict.ac.cn	Yes
IP address	159.226.97.84	Yes
Phone number	189-6666-8888	Yes
MAC address	00-1E-C9-43-24-42	Yes

- Friendliness. Are the names user-friendly, i.e., understandable by humans?
 用户友好性:是否对人(用户)友好,便于用户理解?
 - The eight name schemes in Table have roughly decreasing user friendliness
 - "Joan Smith" is much more understandable than "00-1E-C9-43-24-42", which is the name
 of the network interface circuitry in a computer, also called MAC address

Namespace	Name (a legitimate string)	User Friendliness				
Personal name	Joan Smith	Yes		Yes		
WeChat user	中关村民		Mostly Yes			
URL	cs101.ucas.edu.cn/中文/			Somewhat friendly		
Internet site	www.ict.ac.cn			Somewhat friendly		
Email address	zxu@ict.ac.cn			Somewhat friendly		
IP address	159.226.97.84			No		
Phone number	189-6666-8888			No		
MAC address	00-1E-C9-43-24-42		V	No		

- Autonomy. Can a user create or change a name on his own? 自主性
 - Autonomy has the advantage of convenience, but may lead to chaos
 - One may change a URL, but Web links to the old URL become invalid
 - Creating or modifying a name may need to go through a centralized process
 - Involving an authority of name registry

Namespace	Name (a legitimate string)	Autonomy
Personal name	Joan Smith	?
WeChat user	中关村民	?
URL	L cs101.ucas.edu.cn/中文/ ?	
Internet site	www.ict.ac.cn	?
Email address	zxu@ict.ac.cn	?
IP address	159.226.97.84	?
Phone number	189-6666-8888	?
MAC address	00-1E-C9-43-24-42	?

- Autonomy. Can a user create or change a name on his own?
 - Autonomy has the advantage of convenience, but may lead to chaos
 - One may change a URL, but Web links to the old URL become invalid
 - Creating or modifying a name may need to go through a centralized process
 - Involving an authority of name registry

Namespace	Name (a legitimate string)	Autonomy	
Personal name	Joan Smith	Yes	
WeChat user	中关村民	Mostly Yes	
URL	cs101.ucas.edu.cn/中文/	Hierarchically Centralized	
Internet site	www.ict.ac.cn	Hierarchically Centralized	
Email address	zxu@ict.ac.cn	Hierarchically Centralized	
IP address	159.226.97.84	Hierarchically Centralized	
Phone number	189-6666-8888	Choose from a centralized pool	
MAC address	00-1E-C9-43-24-42	Hierarchically Centralized	

- Name conversion. An entity can have two namespaces.
 - The Internet site with domain name www.ict.ac.cn and IP address 159.226.97.84
 - The Domain Name System (DNS) converts a domain name to its IP address
 DNS将互联网域名转换为IP地址
 - http://www.ict.ac.cn → http://159.226.97.84
- Two types of IP addresses are used today 两类IP地址
 - **IPv4 addresses** use **32 bits** and can generate 2³² different IP addresses
 - Each IPv4 address is organized as a 4-field format xxx.xxx.xxx.xxx such as 159.226.97.84
 IPv4地址通常写成"."区分开的4个字段,每个从0到255
 - Each field is a decimal number from 0 to 255

159.266.97.84是非法的

- Name conversion. An entity can have two namespaces.
 - The Internet site with domain name www.ict.ac.cn has an IP address 159.226.97.84
 - The Domain Name System (DNS) converts a domain name to its IP address
 DNS将互联网域名转换为IP地址
 - http://www.ict.ac.cn → http://159.226.97.84
- Two types of IP addresses are used today 两类IP地址
 - IPv4 addresses use 32 bits and can generate 2³² different IP addresses
 - Each IPv4 address is organized as a 4-field format xxx.xxx.xxx.xxx such as 159.226.97.84
 IPv4地址通常写成"."区分开的4个字段
 - Each field is a decimal number from 0 to 255
 159.266.97.84是非法的
 - IPv6 addresses use 128 bits and can generate 2¹²⁸ different IP addresses
 - *** Each IPv6 address is an 8-field format (colon-hexadecimal form)
 xxxx:xxxx:xxxx:xxxx:xxxx:xxxx:xxxx
 such as 2001:0db8:85a3:0000:0000:8a2e:0370:7334
 - ***IPv6地址通常写成":"区分开的8个字段,每个包含4个Hex数

- Name conversion. An entity can have two namespaces.
 - The Internet site with domain name www.ict.ac.cn has an IP address 159.226.97.84
 - The Domain Name System (DNS) converts a domain name to its IP address
 DNS将互联网域名转换为IP地址
 - http://www.ict.ac.cn → http://159.226.97.84
- Two types of IP addresses are used today 两类IP地址
 - IPv4 addresses use 32 bits and can generate 2³² different IP addresses
 - Each IPv4 address is organized as a 4-field format xxx.xxx.xxx.xxx such as 159.226.97.84
 IPv4地址通常写成"."区分开的4个字段
 - Each field is a decimal number from 0 to 255
 159.266.97.84是非法的
 - IPv6 addresses use 128 bits and can generate 2¹²⁸ different IP addresses
 - *** such as 2001:0db8:85a3:0000:0000:8a2e:0370:7334
- IPv4 addresses exhaustion occurred as of November 2019
 - There are 2¹²⁸⁻³² = 2⁹⁶ times as many IPv6 addresses as IPv4 addresses
 2019年11月,全球IPv4地址已穷尽

万维网网址 URL

Uniform Resource Locator 入门知识

http://cs101.ucas.edu.cn/中文/协议网站(域名或IP地址)路径

- 其他协议:
 - file: 访问本计算机的文件
 - ftp: 访问互联网上任意计算机的文件
 - https:安全地访问Web资源
 - mailto: 访问电子邮件地址

Domain name hierarchy and URL

- 给定域名树, What is the URL of the homepage 首页 of the following institutions?
 - Fan Wang
 - Journal of Computer Science and Technology
 - Peking University
 - Shenzhen Institute of Advanced Technology
 - The World Wide Web Consortium
 - The University of Chinese Academy of Sciences
- Check your answers by accessing the URLs

Domain name hierarchy and URL

 What is the URL of the homepage of each of the following institutions? What is the top-level domain?

•	http://fan.wang/	wang
•	http://jcst.ict.ac.cn/	cn
•	http://pku.edu.cn/	cn
•	http://www.siat.ac.cn/	cn
•	http://w3.org/	org
•	http://English.ucas.ac.cn	cn

1.2 Topology 网络拓扑

- Three types of networks 静态网络、动态网络、演化网络
 - A static network does not change nodes and edges
 - A dynamic network does not change nodes; may change edges
 - At one moment, the bus connects the processor (P) and the memory (M)
 - At the next moment, the bus connects the memory (M) and an input device (I)
 - The bus supports a shared-media network, while the crossbar supports a switching network
 总线: 一对一、一对多(广播);交叉开关:多对多
 - An Evolutionary network change both nodes and edges over time
 - Internet, WWW

How does a dynamic network work?

• Bus arbitration 总线仲裁例子

Time interval 1: CPU connects to Ethernet

How does a dynamic network work?

- Bus arbitration
 - Time interval 1: CPU connects to Ethernet
 - End of interval 1: Bus arbitration operation
 - Switch to a new connection

How does a dynamic network work?

- Bus arbitration
 - Time interval 1: CPU connects to Ethernet
 - End of interval 1: Bus arbitration operation
 - Switch to a new connection
 - Time interval 2: CPU connects to GPU

Switch 交换机 交叉开关,比总线成本更高

- All nodes of the network are dynamically connected
 - Switch = dynamic fully-connected network

Switch 交换机 交叉开关,可实现任意连通

- All nodes of the network are dynamically connected
 - Switch = dynamic fully-connected network
- Can be configured to realize any connection
 - Interval 1: Permutation, {P→M, M→I, I→P}

Switch 交换机 交叉开关

- All nodes of the network are dynamically connected
 - Switch = dynamic fully-connected network
- Can be configured to realize any connection
 - Interval 1: Permutation, {P→M, M→I, I→P}
 - Interval 2: Broadcast, $\{P \rightarrow P, P \rightarrow M, P \rightarrow I\}$

Switch 交换机 交叉开关

- All nodes of the network are dynamically connected
 - Switch = dynamic fully-connected network
- Can be configured to realize any connection
 - Interval 1: Permutation, {P→M, M→I, I→P}
 - Interval 2: Broadcast, $\{P \rightarrow P, P \rightarrow M, P \rightarrow I\}$
 - Interval 3: Point-to-point, {P→M}

Switch 交换机 交叉开关,可实现任意连通

- All nodes of the network are dynamically connected
 - Switch = dynamic fully-connected network
- Can be configured to realize any connection
 - Interval 4: {P→M, M→I, I→M}
 不行!
 - 可实现任意无冲突连通

课堂小测验

• 姓名: 学号:

假设WebServer.go已经在你的笔记本电脑上运行。请指出下述哪一个URL是正确的,即用你的笔记本电脑上的浏览

器访问不会出错()

A. mailto://cs101.ucas.edu.cn/中文/

B. file://localhost:8080/

C. https://localhost:8080/

D. http://127.0.0.1:8080/

2. Protocol stack 协议栈

- A network uses a protocol stack to communicate messages
 - A set of layers of protocols
 - We focus on one stack
- Key terms
 - Message and packet
 消息 vs. 分组(包、数据包)
 - Packet is part of a message
 - Circuit switching versus packet switching 线路交换 vs. 分组交换
 - The Web over Internet stack
 - HTTP
 - TCP
 - IP
 - Ethernet or WiFi
 - Wired or wireless

互联网协议栈

The Web over Internet Stack

Layer	Protocol	Purpose		
Application Layer Layer 5	HTTP	Access hypertext resources on a Web server from a Web client		
Transport Layer Layer 4	TCP	Reliably transfer packets between two Internet hosts		
Network Layer Layer 3	IP	Transfer packets between two Internet hosts in the best-effort way		
Data Link Layer Layer 2	Ethernet, WiFi	Reliably transfer packets between two homogeneously connected devices		
Physical Layer Layer 1	Wired or wireless, electrical or optical, cables or waveforms	Provide physical communication channels Transfer signals of individual bits		

2.1 线路交换与分组交换(包交换)

- 两种主要的通信方法
 - 传统的电话通信采用线路交换,计算机网络采用分组交换
- 线路交换(circuit switching)
 - 假设A与B要通话
 - 建立一条从A到B的物理线路
 - 在整个通话时间,这条物理线路一直被A和B的会话独占
 - 使用了上百年,质量好,但通信线路效率低(2%)

线路交换与分组交换

- 两种主要的通信方法
 - 传统的电话通信采用线路交换, 计算机网络采用分组交换
- 线路交换(circuit switching)
 - 假设A与B要通话
 - 建立一条从A到B的物理线路
 - 在整个通话时间,这条物理线路一直被A和B的会话独占
- 分组交换(packet switching)
 - 假设A要送一条消息给B
 - 将消息拆成很多小单元,称为"包"或"分组"(packet)
 - 通信线路每个时刻只在传输一个包
 - 但在1秒钟的时间内,通信线路传递来自多个用户的多个消息的包
 - 100个用户感受到: 多条消息同时在一条物理线路上传播

包格式 A packet has two parts

header and body

Packet body is the payload data

包体是载荷数据

Packet header holds various metadata

包头是元数据

Addresses of source and destination nodes

地址

- Error check information, e.g., Cyclic Redundancy Check (CRC) 查错
- Other information, e.g., control information

其他控制信息

- Part of header may come after body
- Think of post mail

Body

=

Letter

包体 = 信

Header

=

Envelop

包头 = 信封

Format of an Ethernet packet

7 bytes	1 byte	6 bytes	6 bytes	2 bytes	46-1500 bytes	4 bytes
Preamble	Frame Delimiter	Destination MAC Address	Source MAC Address	Туре	Data (Payload)	CRC

以太网与WiFi的帧格式

字节数		包头				包体	另计
		地址	查错	其他	小计	四件	总计
以太网	最小包	12	4	10	26	46	72
802.3	最大包	12	4	10	26	1500	1538
WiFi	最小包	24	4	6	34	0	34
802.11	最大包	24	4	6	34	2312	2346

以太网 (IEEE 802.3) 帧格式

7 bytes	1 byte	6 bytes	6 bytes	2 bytes	46-1500 bytes	4 bytes
Preamble	Frame Delimiter	Destination MAC Address	Source MAC Address	Type	Data (Payload)	CRC

WiFi (IEEE 802.11) 帧格式

2 bytes	2 bytes	6 bytes	6 bytes	6 bytes	2 bytes	6 bytes	0-2312 bytes	4 bytes
Frame Control	Duration	Address 1	Address 2	Address 3	Sequence	Address 4	Data (Payload)	CRC

VS.

packet switch

Assumptions for both systems:

假设三个下载任务使用10 Mbps带宽资源平均延迟更小 任务1没有阻塞其他任务

2.2 Protocol stack 协议栈

- A network uses a protocol stack to communicate messages
 - A set of layers of protocols
 - We focus on one stack
- Key terms
 - Message and packet
 消息 vs. 分组(包、数据包)
 - a message is divided into one or more packets
 - Circuit switching versus packet switching 线路交换 vs. 分组交换
 - The Web over Internet stack
 - HTTP
 - TCP
 - IP
 - Ethernet or WiFi
 - Wired or wireless

互联网协议栈

The Web over Internet Stack

	Layer	Protocol	Purpose		
	Application		Access hypertext resources		
	Layer	HTTP	on a Web server		
	Layer 5		from a Web client		
	Transport		Reliably transfer TCP packets		
	Layer	TCP	between two		
	Layer 4		Internet hosts		
	Network	IP	Transfer IP datagrams 数据报		
	Layer		Between two Internet hosts		
	Layer 3		in a best-effort way		
	Data Link		Reliably transfer frames 帧		
	Layer	Ethernet, WiFi	between two homogeneously		
	Layer 2		connected devices		
	Physical	Wired or wireless,	Provide physical		
	Layer	electrical or optical,	communication channels		
	Layer 1	cables or waveforms	Transfer signals of individual bits		
,		-			

HTTP GET request and response messages

- Request message: http://www.shanghaitech.edu.cn/
 - Sent to the server as a stream of packets
- Response message: the contents of the home page
 - Sent from the server as a stream of packets

- Response message, i.e., the contents of the home page, is divided into a number of packets, i.e., slices of the message
 - Each HTTP packet is turned into an Ethernet packet as follows 打包
 - HTTP packet (pink) is handed to the TCP layer as the body of a TCP packet
 - TCP layer adds a TCP header (blue) to form a TCP packet
 - The TCP packet is handed over to the IP layer as the IP packet body
 - The IP layer adds an IP header (yellow) to form an IP packet
 - Finally, the IP packet is handed over to the data link (Ethernet) layer as the Ethernet packet body
 - The Ethernet layer adds an Ethernet header (red) to form an Ethernet packet

- Response message, i.e., the contents of the home page, is divided into a number of packets, i.e., slices of the message
 - Each HTTP packet is turned into an Ethernet packet as follows 打包
 - HTTP packet (pink) is handed to the TCP layer as the body of a TCP packet
 - TCP layer adds a TCP header (blue) to form a TCP packet
 - The TCP packet is handed over to the IP layer as the IP packet body
 - The IP layer adds an IP header (yellow) to form an IP packet
 - Finally, the IP packet is handed over to the data link (Ethernet) layer as the Ethernet packet body
 - The Ethernet layer adds an Ethernet header (red) to form an Ethernet packet

- Response message, i.e., the contents of the home page, is divided into a number of packets, i.e., slices of the message
 - Each HTTP packet is turned into an Ethernet packet as follows 打包
 - HTTP packet (pink) is handed to the TCP layer as the body of a TCP packet
 - TCP layer adds a TCP header (blue) to form a TCP packet
 - The TCP packet is handed over to the IP layer as the IP packet body
 - The IP layer adds an IP header (yellow) to form an IP packet
 - Finally, the IP packet is handed over to the data link (Ethernet) layer as the Ethernet packet body
 - The Ethernet layer adds an Ethernet header (red) to form an Ethernet packet

- Each HTTP packet is communicated as follows 传输
 - ① The server host sends an HTTP packet, wrapped as an Ethernet packet, to the Ethernet switch
 - ② The switch opens the packet to reveal the Ethernet and the IP headers, and then adds a new header to form a new Ethernet packet
 - ③ When the packet arrives at Router2, the router opens the packet to reveal both the Ethernet and the IP headers and then form a new Ethernet packet by reformatting the packet and adding a new Ethernet header
 - Similar steps take place at Router1 (③) and the WiFi Switch (②), and then a
 WiFi packet arrives at the laptop computer host (①)

- Each HTTP packet is communicated as follows 解包
 - After a WiFi packet arrives at the laptop computer host in Beijing, it is unpacked by the host (the laptop computer) to reveal
 - the IP packet,
 - the TCP packet, and finally
 - the HTTP packet, i.e., a slice of the message

Does Zhang need to worry about TCP/IP and Ethernet when surfing the Web?

张蕾访问上海科大网站时,需要操心TCP/IP与以太网吗?

- No! A user only needs to know the peering interface HTTP
- Two types of interfaces
 - Peering interface for user

对等接口

Service interfaces for implementation

服务接口

Can one send an upper layer packet 能否只传HTTP包 without also sending a lower layer packet? 不传IP包

- Can the Web server in Shanghai send an HTTP packet to Zhang's Web browser in Beijing, without also sending an Ethernet frame?
- No! 不能只传上层数据包(如TCP包),而不传下层包(IP包、以太网包)
 - Any information at the HTTP layer is wrapped in a data link layer packet, and eventually wrapped in a physical layer packet
 - One cannot send a high layer packet without also sending a packet of every layer below
 - When a packet enters a network, it is in a data link layer format and travels as wired and/or wireless signals

What is actually sent over the network hardware?

- Bit string of 0's and 1's
 任何数据包最终在物理层作为比特流传递,即一串0或1信号(电、光)
- Any packet is eventually encapsulated as one or more physical layer packets, which travel as wired or wireless signals
 - A physical layer packet is sent through electrical cables, electromagnetic waveforms or optical fibers, in a bit string of 0's and 1's
 - A 0 may be represented as a LOW voltage pulse or a LIGHTOFF state,
 while a 1 may be represented as a HIGH voltage pulse or a LIGHTON state

Do all packets travel through the same physical path?

从A到B的一条消息的数据包必然通过同一条通路吗?

- A message is sent from host A to host B
 - Do all packets of the message travel through the same physical path from host A to host B?
 - Not necessarily. Internet has built-in redundancy 不一定。互联网有冗余通路
 - Possible physical paths for a 99-packet message from A to B
 - 1st packet of the message travels along the physical path A-T-X-Y-W-B
 - 49th packet traverses path A-T-U-V-W-B
 - Arriving at B before 1st packet
 - 99th packet traverses path A-T-X-Z-Y-W-B
 - Complete message is reassembled from the packets by their numbers

Do all packets travel through the same physical path?

从A到B的一条消息的数据包必然通过同一条通路吗?

- A message is sent from host A to host B
 - Do all packets of the message travel through the same physical path from host A to host B?
 - Not necessarily. Internet has built-in redundancy 不一定。互联网有冗余通路
 - Possible physical paths for a 99-packet message from A to B
 - 1st packet of the message travels along the physical path A-T-X-Y-W-B
 - 49th packet traverses path A-T-U-V-W-B
 - Arriving at B before 1st packet
 - 99th packet traverses path A-T-X-Z-Y-W-B
 - Complete message is reassembled from the packets by their numbers

Do all packets travel through the same physical path?

从A到B的一条消息的数据包必然通过同一条通路吗?

- A message is sent from host A to host B
 - Do all packets of the message travel through the same physical path from host A to host B?
 - Not necessarily. Internet has built-in redundancy 不一定。互联网有冗余通路
 - Possible physical paths for a 99-packet message from A to B
 - 1st packet of the message travels along the physical path A-T-X-Y-W-B
 - 49th packet traverses path A-T-U-V-W-B
 - Arriving at B before 1st packet
 - 99th packet traverses path A-T-X-Z-Y-W-B
 - Complete message is reassembled from the packets by their numbers

